layout: true --- class: middle, inverse ## .center[Introduction to Open Source Conjoint] .leftcol40[ <center> <img src="https://jhelvy.github.io/2023-qux-conf-conjoint/images/logo.png" width=300> </center> ] .rightcol60[ ###
John Paul Helveston, Ph.D. ###
The George Washington University | Dept. of Engineering Management and Systems Engineering ###
June 15, 2023 ] --- # .center[Target audience] -- ## You are familiar with: <br> ## - Conjoint analysis / discrete choice experiments -- ## - Choice modeling / utility models -- ## - R / programming in general --- class: center, middle # Install Software! ### https://jhelvy.github.io/2023-qux-conf-conjoint/software --- name: background # Hello World! .leftcol30[.circle[ <img src="images/john_helveston_circle.png" width="300"> ]] .rightcol70[ ### John Helveston, Ph.D. .font80[ Assistant Professor, Engineering Management & Systems Engineering - 2016-2018 Postdoc at [Institute for Sustainable Energy](https://www.bu.edu/ise/), Boston University - 2016 PhD in Engineering & Public Policy at Carnegie Mellon University - 2015 MS in Engineering & Public Policy at Carnegie Mellon University - 2010 BS in Engineering Science & Mechanics at Virginia Tech - Website: [www.jhelvy.com](http://www.jhelvy.com/) ]] --- class: center ## Technology Change Lab > I study how consumers, firms, markets, and policy affect technological change, with a focus on accelerating the transition to low-carbon technologies .leftcol[ ### .center[Electric & Sustainable Vehicle Technologies] <center> <img src="images/ev.png" width=280> </center> ] .rightcol[ ### .center[Market & Policy Analysis] <center> <img src="images/market.png" width=250> </center> ] --- background-color: #000 class: center, middle, inverse # How can you find out know what people want? <center> <img src="images/crystal_ball.jpg" width=500> </center> --- class: center ## Directly asking people what they want isn't always helpful -- ### (People want everything) <center> <img src="images/the_homer.png" width=700> </center> --- class: center, middle ## Which feature do you care more about? <center> <img src="images/phone.png" width=200> </center> .cols3[ ## .center[Battery Life?] <center> <img src="images/phone_battery.png" width=100%> </center> ] .cols3[ ## .center[Brand?] <center> <img src="images/phone_brand.png" width=100%> </center> ] .cols3[ ## .center[Signal quality?] <center> <img src="images/phone_signal.png" width=100%> </center> ] --- class: center ## **Conjoint Analysis**: ## Use choice data to model preferences <center> <img src="images/conjoint_table.png" width=900> </center> --- ### .center[Use random utility framework to predict probability of choosing phone _j_] <br> -- ### 1. `\(u_j = \beta_1\mathrm{price}_j + \beta_2\mathrm{brand}_j + \beta_3\mathrm{battery}_j + \beta_4\mathrm{signal}_j + \varepsilon_j\)` -- ### 2. Assume `\(\varepsilon_j \sim\)` iid Gumbel distribution -- ### 3. Probability of choosing phone _j_: `\(P_j = \frac{e^{\beta'x_j}}{\sum_k^J e^{\beta'x_k}}\)` -- ### 4. Estimate `\(\beta_1\)`, `\(\beta_2\)`, `\(\beta_3\)`, `\(\beta_4\)` via maximum likelihood estimation --- class: center .leftcol[.center[ ## **Willingness to Pay** <br> .font140[Respondents on average are willing to pay $XX to improve battery life by XX%] ]] -- .rightcol[ ## **Make predictions** ### `\(P_j = \frac{e^{\hat{\beta}'x_j}}{\sum_k^J e^{\hat{\beta}'x_k}}\)` <center> <img src="images/phone_price_sens.png" width=500> </center> ] --- ## .center[Choice-Based Conjoint Analysis Steps] <br> ## 1. Design a survey (design of experiment) ## 2. Implement it online ## 3. (Collect data) <- not covering this today ## 4. Estimate models --- background-color: #fff ### .center[**Software** for Choice-Based Conjoint Analysis] <center> <img src="images/software-table.png" width=900> </center> -- - **.red[Licenses cost $$$]** -- - **.red[Not reproducible]** --- class: center # **FOSS** for Choice-Based Conjoint Analysis .cols3[ ## .center[Experiment Design] R: - {cbcTools} - {ExpertChoice} - {support.CEs} - {idefix} - {choiceDes} ] .cols3[ ## .center[Online Surveys] R: - formr ] .cols3[ ## .center[Model Estimation] R: - {logitr} - {apollo} - {mlogit} - {gmnl} - {mixl} Other: - Python: {xlogit} - Stan ] --- class: center # **FOSS** for Choice-Based Conjoint Analysis .cols3[ ## .center[Experiment Design] <center> <img src="images/cbctools.png" width=200> <br> by John Paul Helveston </center> ] .cols3[ ## .center[Online Surveys] <br> ## .center[.font200[<span style="font-family: Roboto,Arial,sans-serif;"><span style="color: #8dc63f;">f</span>orm<span style="color: #8dc63f;">{`r}</span></span>]] <center> by Ruben C. Arslan and Cyril S. Tata <br><br> Conjoint adaptation by John Paul Helveston </center> ] .cols3[ ## .center[Model Estimation] <center> <img src="images/logitr.png" width=200> <br> by John Paul Helveston </center> ] --- class: inverse <br> ## .center[Back to workshop website:<br><br> https://jhelvy.github.io/2023-qux-conf-conjoint/] .footer-large[ .right[ @JohnHelveston
<br> @jhelvy
<br> @jhelvy
<br> jhelvy.com
<br> jph@gwu.edu
]]