background-image: url("images/blue.jpg") background-size: cover class: inverse <br><br><br><br> ## Spatial Patterns of Electric Vehicle<br>Accessibility in the United States **.white[John Paul Helveston]**, George Washington University<br> Lujin Zhao, George Washington University<br> Michael Mann, George Washington University<br> August 06, 2025 --- class: middle, center ## Addressing the **“innovation-needs paradox”**: ## The people most likely to benefit from a technology<br>are often the last ones to adopt it. --- class: center background-color: #fff ### .center[**Data**: 105M vehicle listings from ~60k dealerships (marketcheck.com)<br>(2016 - 2024, inclusive)] #### New Vehicles <table> <thead> <tr> <th style="text-align:left;"> Type </th> <th style="text-align:left;"> CV </th> <th style="text-align:left;"> HEV </th> <th style="text-align:left;"> PHEV </th> <th style="text-align:left;"> BEV </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Car </td> <td style="text-align:left;"> 13,927,982 </td> <td style="text-align:left;"> 885,351 </td> <td style="text-align:left;"> 132,823 </td> <td style="text-align:left;"> 354,163 </td> </tr> <tr> <td style="text-align:left;"> SUV </td> <td style="text-align:left;"> 28,005,232 </td> <td style="text-align:left;"> 1,101,007 </td> <td style="text-align:left;"> 182,339 </td> <td style="text-align:left;"> 852,760 </td> </tr> </tbody> </table> #### Used Vehicles <table> <thead> <tr> <th style="text-align:left;"> Type </th> <th style="text-align:left;"> CV </th> <th style="text-align:left;"> HEV </th> <th style="text-align:left;"> PHEV </th> <th style="text-align:left;"> BEV </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Car </td> <td style="text-align:left;"> 27,533,922 </td> <td style="text-align:left;"> 1,401,286 </td> <td style="text-align:left;"> 212,627 </td> <td style="text-align:left;"> 553,778 </td> </tr> <tr> <td style="text-align:left;"> SUV </td> <td style="text-align:left;"> 29,172,845 </td> <td style="text-align:left;"> 434,992 </td> <td style="text-align:left;"> 17,010 </td> <td style="text-align:left;"> 236,402 </td> </tr> </tbody> </table> --- class: inverse, middle, center # How many dealerships are carrying PEVs? --- class: center ## **4/5** dealers have _new_ BEV; **2/5** dealers have _used_ BEV <center> <img src="images/pev-percent-dealers.png" width=95%> </center> --- class: center ## PEVs still a small % of overall listings (7% new, 4% used) <center> <img src="images/pev-percent-listings.png" width=95%> </center> --- class: center ## PEV affordability still a major challenge<br>**Majority of growth in high-price segments** <center> <img src="images/pev_percent_listings_price_bin.png" width=100%> </center> --- class: inverse, middle, center # How hard is it to get to a PEV dealer? --- background-color: #fff ### **Vehicle accessibility metric**:<br>Road travel time from census tract centroid to<br>nearest dealership with a target vehicle <center> <img src="images/pev-access-diagram.png" width=100%> </center> *Road travel times obtained using Open Source Routing Machine (OSRM) --- class: middle .leftcol65[ <center> <img src="images/travel_time_pev_cv_cfp.png" width=100%> </center> ] .rightcol35[ ## PEV travel times are converging towards conventional vehicle times 80% of pop: - CV in ~12 min - PEV in ~22 min (2024) - PEV in ~60 min (2016) ] --- class: middle .leftcol65[ <center> <img src="images/cfp_grid.png" width=100%> </center> ] .rightcol35[ ### Additional travel times (PEV - CV) by demographic blocks shows disparities Places with worse PEV access: - Lower income areas - Rural areas - Republican strongholds ] --- class: middle, center background-color: #fff .leftcol70[ <center> <img src="images/pev-access-time-map.png" width=100%> </center> ] .rightcol30[ ### “PEV Deserts” exist in some areas, particularly in <$20,000 price range ] --- class: middle, center background-color: #fff ## **Key Finding**: EV accessibility is spatially concentrated ### Transportation electrification will be **geographically clustered** rather than evenly distributed <center><img src="images/urban-vs-rural.png" width=60%></center> --- ## .center[Grid planning must account for<br>**uneven adoption patterns**] .center[Leveraging vehicle _listings_ can be useful for high-resolution planning] .leftcol[ .center[**Concentrated demand**] - Urban, higher-income areas - Requires targeted grid investments - Peak demand challenges ] .rightcol[ .center[**Missed opportunities**] - Rural wind resources underutilized - Limited distributed load balancing - Reduced renewable integration potential ] --- ## .center[**Affordability gap** limits mass-market electrification] ### - Only **1.3%** of new vehicles under $40k are EVs ### - **94%** of used market is under $40k with minimal EV options <center><img src="images/used-new-evs.png" width=65%></center> --- ## .center[**Dealerships matter** for the energy transition] ### - Direct experience increases willingness to adopt<br>.gray[(Roberson & Helveston, 2020; Agrawal et al., 2022)] ### - Geographic barriers limit consumer exposure .leftcol55[ - 60+ minute travel penalties in rural areas - Abundant conventional options nearby - Limited EV education opportunities ] .rightcol45[ <center><img src="images/road.png" width=100%></center> ] --- class: inverse background-image: url("images/blue.jpg") background-size: cover <br><br><br><br><br><br><br><br><br><br> # Thanks! ### Slides: ### https://jhelvy.github.io/2025-btr7-ev-spatial/ .footer-large[.white[.right[ @jhelvy.bsky.social
<br> @jhelvy
<br> jhelvy.com
<br> jph@gwu.edu
]]] --- class: inverse, middle, center # Extra Slides --- ## .center[**Policy coordination** needed for equitable transition] <br> ### .center[Current patterns reinforce existing inequalities] .leftcol[ .center[**Expand access**] - Direct-to-consumer sales - Rural dealership incentives - Charging infrastructure investment ] .rightcol[ .center[**System benefits**] - More distributed demand - Better renewable integration - Grid stability support ]