layout: true <!-- this adds the link footer to all slides, depends on my-footer class in css--> <div class="footer-small"> <span> © John Paul Helveston, The George Washington University, June 2025 </span> </div> --- background-image: url("images/blue.jpg") background-size: cover class: inverse <br><br><br><br> ## Clean Tech and Trade in an<br>Era of Nationalism <br><br><br><br> **.white[John Paul Helveston]**, George Washington University Snowmass 2025 --- class: middle, center, inverse # New Political Reality: <br> # Nationalism > Globalization ## (Security > Efficiency) --- ## .center[Manufacturing job loss (~5M since 2000)] - Long term economic transition towards services - "Hollowing out" of US industrial base <center> <img src="images/manufacturing_employment.png" width=65%> </center> https://en.wikipedia.org/wiki/Manufacturing_in_the_United_States --- ## .center[Rise Chinese dominance in clean tech supply chains] .leftcol[ #### .center[EV battery supply chain] <center> <img src="images/battery-supply-chain.png" width=100%> </center> .font80[Cheng, Anthony L., et al. "Electric vehicle battery chemistry affects supply chain disruption vulnerabilities." Nature Communications 15.1 (2024): 2143.] ] .rightcol[ #### .center[Solar module supply chain] <center> <img src="images/solar-supply-chain.png" width=100%> </center> .font80[IEA Special report 2022: Solar PV Global Supply Chains, https://www.iea.org/reports/solar-pv-global-supply-chains] ] --- # .center[**Bipartisan goal**: The US needs to counter China's lead in clean energy tech] <br> -- ## **Keep Chinese clean tech out of US market**: Steep tariffs on imported Chinese EVs, batteries, PV modules -- ## **Keep Chinese firms out of US clean tech supply chains**: IRA restrictions on EV subsidy elligiblity, stricter Foreign Entities of Concern (FEOC) rules --- # .center[Countering China by Investing in Manufacturing] <br> ## **IRA Strategy**: Investing in *manufacturing* will lead to enduring support for clean tech through local jobs & economic benefits <br> -- ## ...strategy hasn't entirely worked 😔<br>(2 years wasn't enough time) --- class: inverse, middle, center # Solar PV --- class: center, middle ### Shift from China to SE Asia (Transhipment) <center> <img src="images/solar-imports.png" width=84%> </center> .font80[Source: https://www.reuters.com/graphics/USA-CHINA/SOLAR-HISTORY/gdpzkdeqlvw/] --- # We need diversification <br> ## China has enough solar PV capacity to meet annual global demand through 2032. Source: Wood Mackenzie, https://www.reuters.com/world/china/china-will-dominate-solar-supply-chain-years-wood-mackenzie-2023-11-07/ -- <br> ## But do we need _onshoring_? --- ## Solar PV ### Total available U.S. federal subsidies: $0.16 / W ### Average U.S. module price (Q1 2024): $0.33 / W <br><br><br><br> Sources: - https://www.nrel.gov/docs/fy24osti/91209.pdf - Michael Davidson, “U.S.-China Clean Energy Race: Accelerating Innovation, Manufacturing and Adoption”, https://web.sas.upenn.edu/future-of-us-china-relations/climate-and-environment/ --- ## Solar PV ### Total available U.S. federal subsidies: $0.16 / W ### Average U.S. module price (Q1 2024): $0.33 / W ### Average cost of production in China: **$0.10 / W** <br><br> Sources: - https://www.nrel.gov/docs/fy24osti/91209.pdf - Michael Davidson, “U.S.-China Clean Energy Race: Accelerating Innovation, Manufacturing and Adoption”, https://web.sas.upenn.edu/future-of-us-china-relations/climate-and-environment/ --- ## Solar PV ### Total available U.S. federal subsidies: $0.16 / W ### Average U.S. module price (Q1 2024): $0.33 / W ### Average cost of production in China: $0.10 / W ### **Risk: U.S. producers unlikely to be globally competitive** Sources: - https://www.nrel.gov/docs/fy24osti/91209.pdf - Michael Davidson, “U.S.-China Clean Energy Race: Accelerating Innovation, Manufacturing and Adoption”, https://web.sas.upenn.edu/future-of-us-china-relations/climate-and-environment/ --- background-color: #fff ## Solar unlikely to produce desired # of manufacturing jobs .leftcol70[ <center> <img src="images/solar-jobs.png" width=100%> </center> ] .rightcol30[ ### Installation and project development accounts for 2/3 of solar jobs. ### **Manufacturing is 12% of solar jobs** .footer[https://irecusa.org/census-solar-job-trends/] ] --- class: middle background-color: #FFFFFF <center> <img src="images/cost-historical.png" width=100%> </center> **Higher prices in 2020**: - 54% higher in China ($387 versus $250 per kW) - 83% in higher Germany ($652 versus $357 per kW) - 107% higher in the U.S. ($877 versus $424 per kW) --- class: middle, center background-color: #FFFFFF ### **Total savings from global supply chains: $67 B ($50 - $84 B)** <center> <img src="images/savings-historical.png" width=100%> </center> .left[Helveston, J.P., He, G., & Davidson, M.R. (2022) “Quantifying the cost savings of global solar photovoltaic supply chains” _Nature_. 612 (7938), pg. 83-87. DOI: [10.1038/s41586-022-05316-6](https://doi.org/10.1038/s41586-022-05316-6)] --- class: inverse, middle, center # Electric Vehicles --- background-color: #fff <center> <img src="images/annual-sales.png" width=78%> </center> --- background-color: #fff ## .center[EV sales in US reaching ~10% of sales] <center> <img src="images/ev-sales-us.png" width=75%> </center> .font80[Source: Argonne National Lab, https://www.anl.gov/ev-facts/model-sales] --- class: center .leftcol70[ <center> <img src="images/ev-price-slope-edit.png" width=100%> </center> .font70[Source: https://www.iea.org/reports/global-ev-outlook-2024/executive-summary] ] .rightcol30[ ### The EV sector has an affordability problem<br>(except in China) ] --- class: center ### China offers more affordable BEVs across all range categories <center> <img src="images/range-price-us-china-class-2024-us.png" width=100%> </center> Data scraped from autocango.com (China) and carsheet.io (USA) --- class: center ### China offers more affordable BEVs across all range categories <center> <img src="images/range-price-us-china-class-2024-both.png" width=100%> </center> Data scraped from autocango.com (China) and carsheet.io (USA) --- class: center ### China offers more affordable BEVs across all range categories <center> <img src="images/range-price-us-china-class-2024-labels-edit.png" width=100%> </center> Data scraped from autocango.com (China) and carsheet.io (USA) --- background-image: url("images/top-four-1.png") background-size: cover --- background-image: url("images/top-four-2.png") background-size: cover --- ## .center[**Opportunities**] .leftcol[ ## Chinese FDI into U.S. ### **Gotion batteries**: Multi-billion dollar investments in Illinois and Michigan ### **Challenge**: Uncertainty around Foreign Entities of Concern (FEOC) status ] -- .rightcol[ ## Technology Licensing Agreements ### **Ford-CATL**: Licensing battery technology in a Michigan plant ### **Challenge**: CATL was recently added to DOD's list of “Chinese military companies” ] --- class: center, middle, inverse # Using vehicle listings to<br>quantify EV market development --- class: center, middle <center> <img src="images/table_listings.png" width=80%> </center> --- class: center background-color: #fff ## BEVs are driven significantly less than other powertrains <center> <img src="images/mileage-all.png" width=100%> </center> .font80[Roberson, Laura A., Pantha, S., & Helveston, J.P. (2024) “Battery-Powered Bargains? Assessing Electric Vehicle Resale Value in the United States” _Environmental Research Letters_ DOI: [10.1088/1748-9326/ad3fce](https://doi.org/10.1088/1748-9326/ad3fce)] --- ## BEVs & PHEVs are depreciating worse than CVs and HEVs ### (Except Tesla) <center> <img src="images/depreciation.png" width=100%> </center> .font80[Zhao, L., Ottinger, E., Yip, A., & Helveston, J.P. (2023) “Quantifying electric vehicle mileage in the United States” _Joule._ 7, 1–15. DOI: [10.1016/j.joule.2023.09.015](https://doi.org/10.1016/j.joule.2023.09.015)] --- class: center background-color: #fff ## BEVs Concentrated in High-Price Segments in US **Only 1.2% of new and 3.5% of used listings under $40,000 were BEVs in 2024** <center> <img src="images/bev_percent_listings_edit.png" width=100%> </center> --- background-image: url("images/map.png") background-size: cover --- class: inverse background-image: url("images/blue.jpg") background-size: cover <br> # Thanks! <br> ### <span class="white-text">https://jhelvy.com/slides</span> <style> .white-text a { color: white !important; } </style> .footer-large[.white[.right[ @jhelvy.bsky.social
<br> @jhelvy
<br> jhelvy.com
<br> jph@gwu.edu
]]] --- class: inverse, middle, center # Extra Slides --- # .center[A Changing Political Reality] ### **2000s Globalization** - Free flow of capital, talent, innovation - Technology spillovers across borders -- ### **2010s Push Back Against Globalization** - Economic security concerns (manufacturing job loss) - Competition with China -- ### **2020s Post-COVID Fragmentation** - Supply chain _resilience_ becomes central - Industrial policy competition - Defense concerns ("Dual Use") ] --- ### .center[War in Ukraine] .leftcol[ - Drones now a clear tactical advantage - Reliance on Chinese supply now a defense issue <center> <img src="images/drone.png" width=100%> </center> .font80[https://www.bbc.com/news/articles/ckgn47e5qyno] ] .rightcol[ <center> <img src="images/china_drone_share.png" width=100%> </center> .font80[https://arc-group.com/china-thriving-drone-industry/] ] --- ## .center[Shift from China to SE Asia (Transhipment)] .leftcol40[ ### Chinese firms still leading producers, but manufacturing shifts to SE Asia to skirt US tariffs <br><br><br><br> .font80[Source: https://www.reuters.com/graphics/USA-CHINA/SOLAR-HISTORY/gdpzkdeqlvw/] ] .rightcol60[ <center> <img src="images/solar-seasia.png" width=90%> </center> ] --- ## .center[Shift from China to SE Asia (Transhipment)] .leftcol40[ ### Solar prices in US are much higher than in China <br><br><br><br><br><br> .font80[Source: https://www.reuters.com/graphics/USA-CHINA/SOLAR-HISTORY/gdpzkdeqlvw/] ] .rightcol60[ <center> <img src="images/solar-prices.png" width=100%> </center> ] --- background-color: #FFFFFF ## .center[Learning curve model] .leftcol60[ <center> <img src="images/learning-curve.png" width=100%> </center> ] .rightcol40[ In context of solar PV: - X: Cumulative installed cap. - Y: = Price per kW <br> Log transformation: `$$\ln Y = \ln a + b \ln X$$` ] --- ## Two-factor learning curve model: <br> ## `$$\ln p_{it} = \ln \alpha_i + \beta_i \ln q_{t} + \gamma_i \ln s_{t} + \varepsilon_{it}$$` <br> ## price ($ / kW) = intercept + installed capacity + silicon price ## for country _i_ and year _t_ --- ## Two-factor learning curve model: <br> ## `$$\ln p_{it} = \ln \alpha_i + \beta_i \ln q_{t} + \gamma_i \ln s_{t} + \varepsilon_{it}$$` <br> ## Learning rate: ## `$$L_i = 1 - 2^{\beta_i}$$` --- class: center, middle background-color: #FFFFFF ## U.S.: 26%; China: 33%; Germany: 20% <center> <img src="images/cost_historical_global_plot.png" width=100%> </center> --- ## .center["National Markets" Counterfactual Scenario] **Assumption**: learning-related price decreases in country _i_ in year _t_ are derived from incrementally more nationally-installed PV capacity ## `$$q_t - q_{t-1} = (q_{it} - q_{it-1}) + (1 - \lambda_t) (q_{jt} - q_{jt - 1})$$` ## `\((q_{it} - q_{it-1})\)`: Amount installed in country _i_ ## `\((q_{jt} - q_{jt-1})\)`: Amount installed in all other countries --- class: center ## `$$q_t - q_{t-1} = (q_{it} - q_{it-1}) + (1 - \lambda_t) (q_{jt} - q_{jt - 1})$$` <br> .leftcol[ ## **Global markets** `\(\lambda_t = 0\)` Capacity from all countries `$$(q_{it} - q_{it-1}) + (q_{jt} - q_{jt - 1})$$` ] .rightcol[ ## **National markets** `\(\lambda_t = 1\)` Capacity only from country _i_ `$$(q_{it} - q_{it-1})$$` <br> `\(\lambda_t\)` -> 1 over 10-year period ]