background-image: url("images/nasa_global_preview.png") background-size: cover <br><br><br><br><br><br><br><br> .rightcol80[.white[ # .fancy[Visualizing Information] ###
DTAIS Workshop ###
John Paul Helveston ###
July 12, 2022 ]] --- class: middle, center # Download [this cheatsheet](https://jhelvy.github.io/dtais-dataviz/content/cheatsheet-dataviz.pdf) for today's content --- class: middle .border[ <center> <img src="figs/graphQuality.png" width=900> </center> ] --- class: middle <center> <img src="images/chart-quality.jpg" width=900> </center> .left[ From [here](https://psyteachr.github.io/msc-data-skills/ggplot.html) ] --- class: inverse, middle .rightcol80[ # "_Having word processing software<br>doesn't make us great writers._" ## — Stephen Few ] --- class: center .leftcol[ # We don't write paragraphs like this <center> <img src="images/bad_text.png"> </center> .left[.font80[ Image from Few (2012, pg. 227) ]]] -- .rightcol[ # So don't make<br>graphs like this <center> <img src="images/bad_3d_bars.png" width=400> </center> .center[.font80[ Image from excelcharts.com ]]] --- class: inverse, middle # .fancy[Visualizing Information] ## 1. The Human Visual-Memory System ## 2. The Psychology of Data Viz ## BREAK ## 3. 10 Data Viz Best Practices --- class: inverse, middle # .fancy[Visualizing Information] ## 1. .orange[The Human Visual-Memory System] ## 2. The Psychology of Data Viz ## BREAK ## 3. 10 Data Viz Best Practices --- class: inverse, middle, center # Good visualizations optimize for<br>the human visual-memory system --- class: center ## A (very) simplified model of the visual-memory system <center> <img src="images/effective-charts-1.png" width=1000> </center> --- class: center ## A (very) simplified model of the visual-memory system <center> <img src="images/effective-charts-2.png" width=1000> </center> --- class: center ## A (very) simplified model of the visual-memory system <center> <img src="images/effective-charts-3.png" width=1000> </center> --- class: center ## A (very) simplified model of the visual-memory system <center> <img src="images/effective-charts-4.png" width=1000> </center> --- class: inverse, middle # Two objectives of effective charts: ## 1. Grab & direct attention (iconic memory) ## 2. Reduce processing demands (working memory) --- class: center # The power of pre-attentive processing ## Count all the "5"s -- <center> <img src="images/fives-1.png" width=500> </center> --- class: center # The power of pre-attentive processing ## Count all the "5s -- <center> <img src="images/fives-2.png" width=500> </center> --- class: center .leftcol[ <center> <img src="images/preattentive-attributes-1.png"> </center> ] -- .rightcol[ ## Pre-attentive attributes <br> <center> <img src="figs/mtCarsScatterColor.png" width=500> </center> ] --- class: center .leftcol[ <center> <img src="images/preattentive-attributes-2.png"> </center> ] .rightcol[ ## Pre-attentive attributes ### .red[Numerical (ratio) data] <center> <img src="figs/mtCarsScatterColor.png" width=500> </center> ] --- class: center .leftcol[ <center> <img src="images/preattentive-attributes-3.png"> </center> ] .rightcol[ ## Pre-attentive attributes ### .red[Numerical (ratio) data]<br>.blue[Categorical (ordinal) data] <center> <img src="figs/mtCarsScatterColor.png" width=500> </center> ] --- class: inverse, middle, center # Not all pre-attentive attributes are equal --- class: center # Where is the red dot? -- .cols3[ <center> <img src="figs/preattentive1.png" width=500> </center> ] -- .cols3[ <center> <img src="figs/preattentive2.png" width=500> </center> ] -- .cols3[ <center> <img src="figs/preattentive3.png" width=500> </center> ] --- # .center[For categorical data:] ### 1. Hue (color) > shape ### 2. Less is more (stay in working memory!) .cols3[ <center> <img src="figs/preattentive1.png" width=500> </center> ] .cols3[ <center> <img src="figs/preattentive2.png" width=500> </center> ] .cols3[ <center> <img src="figs/preattentive3.png" width=500> </center> ] --- class: middle .leftcol[ <center> <img src="images/check-bad.png" width=100><br> <img src="figs/preattentive-bad.png" width=600> </center> ] -- .rightcol[ <center> <img src="images/check-good.png" width=100> <img src="figs/preattentive-good.png" width=650> </center> ] --- class: middle <center> <img src="images/trump_covid.jpg" width=1000> </center> --- class: inverse, middle # .fancy[Visualizing Information] ## 1. The Human Visual-Memory System ## 2. .orange[The Psychology of Data Viz] ## BREAK ## 3. 10 Data Viz Best Practices --- class: center, middle, inverse # Much of the content in this section is from<br>John Rauser's [talk](https://www.youtube.com/watch?v=fSgEeI2Xpdc) on YouTube (Always cite your sources) --- class: middle .leftcol60[ <center> <img src="images/cleveland-pub.png"> </center> ] -- .rightcol40[ Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for analyzing scientific data. Science, New Series, 229(4716), 828-833. ] --- name: cleveland-perception class: inverse # Cleveland's operations of pattern perception: .leftcol[ # 1. Estimation # 2. Assembly # 3. Detection ] --- class: inverse # Cleveland's operations of pattern perception: .leftcol[ # 1. .red[Estimation] --------> # 2. Assembly # 3. Detection ] .rightcol[ - ### **Discrimination** (X equal to Y?) - ### **Ranking** (X greater than Y?) - ### **Ratioing** (X double Y?) ] --- name: cleveland-estimation class: center, middle # .red[Estimation]: Hierarchy for _numerical_ data <center> <img src="images/cleveland-hierarchy.png" width=1000> </center> .leftcol[ ## .left[More Accurate] ] .rightcol[ ## .right[Less Accurate] ] --- class: center # Example: Life expectancy in countries in Asia .leftcol[ ``` #> country lifeExp #> 1 Afghanistan 43.828 #> 2 Iraq 59.545 #> 3 Cambodia 59.723 #> 4 Myanmar 62.069 #> 5 Yemen, Rep. 62.698 #> 6 Nepal 63.785 #> 7 Bangladesh 64.062 #> 8 India 64.698 #> 9 Pakistan 65.483 #> 10 Mongolia 66.803 #> 11 Korea, Dem. Rep. 67.297 #> 12 Thailand 70.616 #> 13 Indonesia 70.650 #> 14 Iran 70.964 #> 15 Philippines 71.688 #> 16 Lebanon 71.993 #> 17 Jordan 72.535 #> 18 Saudi Arabia 72.777 #> 19 China 72.961 #> 20 West Bank and Gaza 73.422 #> 21 Syria 74.143 #> 22 Malaysia 74.241 #> 23 Vietnam 74.249 #> 24 Bahrain 75.635 #> 25 Oman 75.640 #> 26 Kuwait 77.588 #> 27 Taiwan 78.400 #> 28 Korea 78.623 #> 29 Singapore 79.972 #> 30 Israel 80.745 #> 31 Hong Kong, China 82.208 #> 32 Japan 82.603 ``` ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. Color saturation 7. **.red[Color hue]** ] -- .right70[ <center> <img src="images/hue.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. Color saturation 7. **.red[Color hue]** <br> -
/
**Discriminate** -
/
**Rank** -
**Ratio** ] .right70[ <center> <img src="figs/jr_hue.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. Color saturation 7. **.red[Color hue]** Sorting helps a bit... -
/
**Discriminate** -
/
**Rank** -
**Ratio** ] .right70[ <center> <img src="figs/jr_hue_ordered.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. **.red[Color saturation]** 7. Color hue <br> -
/
**Discriminate** -
/
**Rank** -
**Ratio** ] .right70[ <center> <img src="figs/jr_saturation_ordered.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. **.red[Color saturation]** 7. Color hue Align to 0 scale: -
/
**Discriminate** -
/
**Rank** -
/
**Ratio** ] .right70[ <center> <img src="figs/jr_saturation_ordered_zero.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. **.red[Area]** 6. Color saturation 7. Color hue <br> -
/
**Discriminate** -
/
**Rank** -
/
**Ratio** ] .right70[ <center> <img src="figs/jr_area.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. **.red[Area]** 6. Color saturation 7. Color hue ] .right70[ ### .center[Area works okay for "bubble" charts] <center> <img src="images/gapminder_bubbles.jpg" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. **.red[Angle]** 5. Area 6. Color saturation 7. Color hue <br> -
/
**Discriminate** -
**Rank** -
/
**Ratio** ] .right70[ <center> <img src="figs/jr_angle.png" width=750> </center> ] --- class: middle background-color: #FFFFFF .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. Length 4. **.red[Angle]** 5. Area 6. Color saturation 7. Color hue ] .right70[ <center> <img src="figs/statesPie.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. Position on<br>non-aligned scales 3. **.red[Length]** 4. Angle 5. Area 6. Color saturation 7. Color hue <br> -
/
**Discriminate** -
/
**Rank** -
**Ratio** ] .right70[ <center> <img src="figs/jr_length.png" width=750> </center> ] --- class: middle .leftcol30[ 1. Position on a common scale 2. **.red[Position on<br>non-aligned scales]** 3. Length 4. Angle 5. Area 6. Color saturation 7. Color hue <br> -
/
**Discriminate** -
/
**Rank** -
**Ratio** ] .right70[ <center> <img src="figs/jr_position_non_aligned.png" width=750> </center> ] --- class: middle .leftcol30[ 1. **.red[Position on a common scale]** 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. Color saturation 7. Color hue <br> -
**Discriminate** -
**Rank** -
**Ratio** ] .right70[ <center> <img src="figs/jr_position_aligned_ordered.png" width=750> </center> ] --- class: middle .leftcol30[ 1. **.red[Position on a common scale]** 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. Color saturation 7. Color hue .red[ **No need to scale to 0:** - Lowers resolution - Isn't needed for accurate ratioing ]] .right70[ <center> <img src="figs/jr_position_aligned_ordered_zero.png" width=750> </center> ] --- class: middle .leftcol30[ 1. **.red[Position on a common scale]** 2. Position on<br>non-aligned scales 3. Length 4. Angle 5. Area 6. Color saturation 7. Color hue **.red[Sorting still matters!]** ] .right70[ <center> <img src="figs/jr_position_aligned.png" width=750> </center> ] --- template: cleveland-perception --- class: inverse # Cleveland's operations of pattern perception: .leftcol45[ # 1. Estimation # 2. .red[Assembly] --------> # 3. Detection ] <br><br><br> .rightcol55[ #### The grouping of graphical elements ] --- class: inverse, middle, center # .font130[.red[Assembly]: Gestalt Psychology] <br> ### The whole has a reality that is entirely separate from the parts --- class: middle background-color: #FFFFFF <center> <img src="images/gestalt-panda.png" width=400> </center> --- class: center background-color: #FFFFFF # Reification <br> <center> <img src="images/gestalt-f1-logo.jpg" width=700> </center> --- class: center background-color: #FFFFFF .leftcol30[ # Emergence ] .rightcol70[ <center> <img src="images/gestalt-dog.jpg" width=600> </center> ] --- background-color: #FFFFFF .leftcol20[ # Law of Closure Our minds fill in the missing information ] .rightcol80[ <img src="figs/jr_circle.png" width=600> ] --- class: inverse, center # .font120[Prägnanz] <br> ### We strongly prefer to interpret stimuli as regular, simple, and orderly -- .cols3[ <center> <img src="images/unsatisfying-pie.gif" width=500> </center> ] -- .cols3[ <center> <img src="images/unsatisfying-paper.gif" width=500> </center> ] -- .cols3[ <center> <img src="images/unsatisfying-lines.gif" width=500> </center> ] --- class: middle .leftcol30[ # .font120[Prägnanz] .font120[This should cause you cognitive pain] It's the graphical equivalent of this: <center> <img src="images/unsatisfying-pie.gif"> </center> ] .right70[ <center> <img src="figs/jr_position_aligned.png" width=750> </center> ] --- class: middle .leftcol30[ # .font120[Prägnanz] .font120[This makes our brains happy] ] .right70[ <center> <img src="figs/jr_position_aligned_ordered.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Continuity .font120[We will group together objects that follow an established direction] ] .right70[ <center> <img src="figs/mtCarsScatter.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Continuity .font120[We will group together objects that follow an established direction] ] .right70[ <center> <img src="figs/mtCarsScatterSmooth.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Similarity .font120[We see elements that are _physically similar_ as part of the same object] ] .right70[ <center> <img src="figs/mtCarsScatterColor.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Similarity .font120[We see elements that are _physically similar_ as part of the same object] ] .right70[ <center> <img src="figs/mtCarsScatterShape1.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Similarity .font120[We see elements that are _physically similar_ as part of the same object] ] .right70[ <center> <img src="figs/mtCarsScatterShape2.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Similarity .font120[We see elements that are _physically similar_ as part of the same object] ] .right70[ <center> <img src="figs/mtCarsScatterShape3.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Proximity .font120[We tend to see elements that are _physically near_ each other as part of the same object] ] .right70[ <center> <img src="figs/jr_diamonds_bars_dodged.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Proximity .font120[We tend to see elements that are _physically near_ each other as part of the same object] ] .right70[ <center> <img src="figs/jr_diamonds_line_total.png" width=750> </center> ] --- class: middle .leftcol30[ # Law of Proximity .font120[We tend to see elements that are _physically near_ each other as part of the same object] ] .right70[ <center> <img src="figs/jr_diamonds_line_cut.png" width=750> </center> ] --- template: cleveland-perception --- template: cleveland-estimation --- name: cleveland-assembly class: center ## .red[Assembly]: Gestalt Psychology | Law of Closure | Prägnanz | Law of Continuity | Law of Similarity | Law of Proximity | |-|-|-|-|-| | Fill in the missing information | We like regular, simple, and orderly | Group together objects with established direction | Physically _similar_ = same object | Physically _near_ = same object | | <center><img src="figs/jr_circle.png" width=200></center> | <center><img src="figs/jr_position_aligned.png" width=200></center> | <center><img src="figs/mtCarsScatter.png" width=200></center> | <center><img src="figs/mtCarsScatterColor.png" width=200></center> | <center><img src="figs/jr_diamonds_bars_dodged.png" width=200></center> | | | <center><img src="images/unsatisfying-pie.gif" width=200></center> | <center><img src="figs/mtCarsScatterSmooth.png" width=200></center> | <center><img src="figs/mtCarsScatterShape1.png" width=200></center> | <center><img src="figs/jr_diamonds_line_cut.png" width=200></center> | --- class: inverse # Cleveland's operations of pattern perception: .leftcol45[ # 1. Estimation # 2. Assembly # 3. .red[Detection] --------> ] <br><br><br><br><br> .rightcol55[ #### Recognizing that a geometric object encodes a physical value ] --- class: middle <center> <img src="images/norman_door.gif" width=900> </center> --- .leftcol[ # Norman door (n.): 1. A door where the design tells you to do the opposite of what you're actually supposed to do. 2. A door that gives the wrong signal and needs a sign to correct it. ] .rightcol[ <center> <img src="images/design_of_everyday_things.jpg" width=400> </center> ] --- class: center .leftcol[ # Norman door <center> <img src="images/check-bad.png" width=80> <img src="images/norman_door.jpg" width=250> </center> ] -- .rightcol[ # Non-Norman door <center> <img src="images/check-good.png" width=100> <img src="images/non-norman-door.jpg" width=480> </center> ] --- class: middle .border[ <center> <img src="figs/mtCarsScatter.png" width=800> </center> ] --- class: middle .border[ <center> <img src="figs/mtCarsScatterGray.png" width=800> </center> ] --- class: middle .border[ <center> <img src="figs/mtCarsScatterSmall.png" width=800> </center> ] --- class: middle .border[ <center> <img src="figs/mtCarsScatterGrid1.png" width=800> </center> ] --- class: middle .border[ <center> <img src="figs/mtCarsScatterGrid2.png" width=800> </center> ] --- class: middle .border[ <center> <img src="figs/mtCarsScatterGrid3.png" width=800> </center> ] --- class: middle, center The white circles you see at the intersections is called the **"Hermann Grid illusion"** .border[ <center> <img src="figs/mtCarsScatterGrid4.png" width=800> </center> ] --- class: middle .border[ <center> <img src="figs/mtCarsScatterGrid5.png" width=800> </center> ] --- class: inverse, center
05
:
00
# Break! ## Stand up, Move around, Stretch! --- class: inverse, middle # .fancy[Visualizing Information] ## 1. The Human Visual-Memory System ## 2. The Psychology of Data Viz ## BREAK ## 3. .orange[10 Data Viz Best Practices] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. .orange[Remove chart chunk] 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: inverse, middle .rightcol80[ # "_Erase non-data ink._" ## — Ed Tufte ] --- class: center, middle .leftcol[ <center> <img src="images/check-bad.png" width=80> <img src="images/monsterBars.png" width=500> </center> Figure 1.6: `Monstrous Costs’ by Nigel Holmes, in Healy, 2018 ] -- .rightcol[ <center> <img src="images/check-good.png" width=100> <img src="figs/monsterBars.png" width=480> </center> ] --- class: middle <center> <img src="images/less-is-more-darkhorse-analytics.gif" width=800> </center> .left[Figure 24.1: From Data Looks Better Naked by Darkhorse Analytics] --- class: center, middle .leftcol[ <center> <img src="images/check-bad.png" width=80> <img src="images/less-is-more-darkhorse-analytics-before.png" width=500> </center> ] -- .rightcol[ <center> <img src="images/check-good.png" width=100> <img src="images/less-is-more-darkhorse-analytics-after.png" width=480> </center> ] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. .orange[Don't make 3D plots*] 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: center, middle .leftcol[ ## Humans aren't good at distinguishing 3D space <center> <img src="images/penrose-stairs.png" width=400> </center> [Penrose Stairs](https://en.wikipedia.org/wiki/Penrose_stairs ), made famous by<br>M.C. Escher (1898-1972) ] -- .rightcol[ ## Ink proportions !=<br>true proportions <center> <img src="images/3dpies.png" width=500> </center> ] --- class: center, middle # Occlusion: geoms are obscured <center> <img src="images/3d-occlusion.png" width=400> </center> --- class: center, middle .leftcol60[ <center> <img src="images/3dbad.jpeg" width=100%> </center> ] .rightcol40[ # Multiple interpretations ] --- class: center, middle .leftcol40[ <center> <img src="images/check-bad.png" width=80> <img src="images/3d-occlusion.png" width=400> </center> ] -- .rightcol60[ <center> <img src="images/check-good.png" width=100> .border[<img src="figs/facetedBars.png" width=600>] </center> ] --- class: center, middle # The third dimension distracts from the data ## (this is what Tufte calls "chart junk") <center> <img src="images/3d-chart-junk.png" width=700> </center> --- class: center, middle .leftcol60[ <center> <img src="images/check-bad.png" width=80> <img src="images/3d-chart-junk.png"> </center> ] -- .rightcol40[ <center> <img src="images/check-good.png" width=100> .border[<img src="figs/simpleBars.png">] </center> ] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. .orange[Don't lie] 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: center, middle ### "Lie Factor" = `\(\frac{\text{Size of effect in graphic}}{\text{Size of effect in data}}\)` --- class: center, middle ### "Lie Factor" = `\(\frac{\text{Size of effect in graphic}}{\text{Size of effect in data}} = \frac{\frac{5.3 - 0.6}{0.6}}{\frac{27.5 - 18}{18}} = \frac{7.83}{0.53} = 14.8\)` .leftcol60[.border[ <center> <img src="images/tufte-fuel-economy-bad.png"> </center> .font80[.left[Edward Tufte (2001) "The Visual Display of Quantitative Information", 2nd Edition, pg. 57-58.]] ]] -- .rightcol40[.border[ <center> <img src="images/tufte-fuel-economy-good.png" width=370> </center> ]] --- class: center, middle # Bar charts should always start at 0 -- .leftcol60[ <center> <img src="images/check-bad.png" width=80> <img src="images/fox-news-bars.png"> </center> .font70[.left[ Image from http://livingqlikview.com/the-9-worst-data-visualizations-ever-created/ ]]] -- .rightcol40[ <center> <img src="images/check-good.png" width=100> .border[<img src="figs/barchart_zero.png" width=330px>] </center> ] --- class: center, middle # Don't cherry-pick your data -- .leftcol60[ <center> <img src="images/check-bad.png" width=80> <img src="images/fox-news-immigration-bars-bad.jpg"> </center> .font70[.left[ Image from https://www.mediamatters.org/fox-news/fox-news-newest-dishonest-chart-immigration-enforcement ]]] -- .rightcol40[ <center> <img src="images/check-good.png" width=100> .border[<img src="images/fox-news-immigration-bars-good.jpg">] </center> ] --- class: center, middle # Make sure your chart makes sense <center> <img src="images/fox-news-piechart.png" width=600> </center> .font70[.left[ Image from Image from http://livingqlikview.com/the-9-worst-data-visualizations-ever-created/ ]] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. .orange[Don't use pie charts for proportions*] 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: middle, center background-color: #FFFFFF .leftcol45[ <center> <img src="images/check-bad.png" width=80> <img src="figs/statesPie.png" width=750> </center> ] -- .rightcol55[ <center> <img src="images/check-good.png" width=100> <img src="figs/statesBar.png" width=750> </center> ] --- class: middle background-color: #FFFFFF .leftcol45[ # Exceptions: ## - Small data ## - Simple fractions ## - If sum of parts matters ] -- .rightcol55[ <center> <img src="images/bundestag-pie-1.png"> </center> ] --- class: middle, center background-color: #FFFFFF # Best pie chart of all time <center> <img src="images/pie-pyramid.png" width=900> </center> --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. .orange[Don't stack bars*] 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: middle, center # Stacked bars are rarely a good idea .border[ <center> <img src="figs/jr_diamonds_bars_stacked.png" width=700> </center> ] --- class: middle, center ## "Parallel coordinates" plot usually works better .leftcol[.border[ <center> <img src="figs/jr_diamonds_line_cut.png"> </center> ]] .rightcol[.border[ <center> <img src="figs/jr_diamonds_line_total.png"> </center> ]] --- class: middle, center ## Exception:<br>When you care about the _total_ more than the categories .leftcol60[.border[ <center> <img src="figs/jr_phones_area.png"> </center> ]] -- .rightcol40[.border[ <center> <img src="figs/backgroundChecks.png" width=400> </center> ]] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. .orange[Rotate and sort categorical axes*] 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: middle, center ## Rotate axes if you can't read them .leftcol45[ <center> <img src="images/check-bad.png" width=80> .border[<img src="figs/mpg_bars_bad.png" width=400>] </center> ] -- .rightcol55[ <center> <img src="images/check-good.png" width=100> .border[<img src="figs/mpg_bars_flipped.png" width=750>] </center> ] --- class: middle, center ## Default order is almost always wrong .leftcol[ <center> <img src="images/check-bad.png" width=80> Ordered by alphabet (default) .border[<img src="figs/mpg_bars_flipped.png">] </center> ] -- .rightcol[ <center> <img src="images/check-good.png" width=100> Ordered by count .border[<img src="figs/mpg_bars_flipped_sorted.png">] </center> ] --- class: center ## Exception: Ordinal variables <center> .border[<img src="images/wildlife-months-bar-1.png" width=900>] </center> --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. .orange[Eliminate legends & directly label geoms*] 8. Don't use pattern fills 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: middle, center ## Directly label geoms .leftcol[ <center> <img src="images/check-bad.png" width=75> .border[<img src="figs/milk_region.png">] </center> ] -- .rightcol[ <center> <img src="images/check-good.png" width=100> .border[<img src="figs/milk_region_label.png">] </center> ] --- class: center ## Exception: When you have repeated categories <center> .border[<img src="images/pattern_fills2.png" width=600>] </center> --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. .orange[Don't use pattern fills] 9. Don't use red & green together 10. Consider tables for small data sets .right[*most of the time] ] --- class: middle background-color: #f8f8f8 <center> <img src="images/pattern_fills3.png" width=600> </center> --- class: middle, center .leftcol[ <center> <img src="images/check-bad.png" width=75> .border[<img src="images/pattern_fills1.png">] </center> ] -- .rightcol[ <center> <img src="images/check-good.png" width=100> .border[<img src="images/pattern_fills2.png">] </center> ] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. .orange[Don't use red & green together] 10. Consider tables for small data sets .right[*most of the time] ] --- class: center # 10% of males and 1% of females are color blind -- .leftcol[ <center> .border[<img src="figs/colorBlindBad1.png">] </center> ] -- .rightcol[ <center> .border[<img src="figs/colorBlindBad2.png">] </center> ] --- class: middle, center ## Facets can be used to avoid color altogether .leftcol[ <center> <img src="images/check-bad.png" width=75> .border[<img src="figs/colorBlindBad1.png">] </center> ] -- .rightcol[ <center> <img src="images/check-good.png" width=100> .border[<img src="figs/colorBlindBad3.png">] </center> ] --- class: inverse # .center[10 Data Viz Best Practices] .font120[ 1. Remove chart chunk 2. Don't make 3D plots* 3. Don't lie 4. Don't use pie charts for proportions* 5. Don't stack bars* 6. Rotate and sort categorical axes* 7. Eliminate legends & directly label geoms* 8. Don't use pattern fills 9. Don't use red & green together 10. .orange[Consider tables for small data sets] .right[*most of the time] ] --- class: middle background-color: #FFFFFF <center> <img src="images/pole-pie1.png" width=900> </center> --- class: middle background-color: #FFFFFF <center> <img src="images/pole-pie2.png" width=900> </center> --- class: center, middle ## Who do you think did a better job in tonight’s debate? | | Clinton | Trump | |-|-|-| | Among Democrats | 99% | 1% | | Among Republicans | 53% | 47% | --- class: inverse # Your turn - go [here](https://docs.google.com/presentation/d/1sL3k4S2e7shShlu_crNxunEH8qMHtuOH_vl_a_Mc1wI/edit?usp=sharing) For your "bad" visualization: 1) Identify where the graphic falls on Cleveland's pattern recognition hierarchy <center> <img src="images/cleveland-hierarchy.png" width=1000> </center> 2) Any design rules that are broken 3) Suggest at least two improvements
10
:
00
--- class: middle <center> <img src="images/bad-viz/army_budget.jpg" width=900> </center> --- class: middle .leftcol40[ <center> <img src="images/bad-viz/prisoners.png" width=500> </center> ] -- .rightcol60[ <center> <img src="figs/prisoner_bars.png" width=900> </center> ] --- class: middle .leftcol40[ <center> <img src="images/bad-viz/junk-life-expectancy-bad.png" width=500> </center> ] -- .rightcol60[ <center> <img src="images/bad-viz/junk-life-expectancy-good1.png" width=400> <img src="images/bad-viz/junk-life-expectancy-good2.png" width=400> </center> ] --- class: middle .leftcol45[ <center> <img src="images/bad-viz/bears-bad.png" width=500> </center> ] -- .rightcol55[ <center> <img src="images/bad-viz/bears-good.jpeg" width=600> </center> ] --- class: middle .cols3[ <center> <img src="images/bad-viz/clinton-tweet-venn-1.png"> </center> ] -- .cols3[ <center> <img src="images/bad-viz/clinton-tweet-venn-2.jpg"> </center> ] -- .cols3[ <center> <img src="figs/backgroundChecks.png"> </center> ]