layout: true <!-- this adds the link footer to all slides, depends on my-footer class in css--> <div class="footer-small"> <span> <a href="#background">Background</a> | <a href="#choose">Conjoint Studies</a> | <a href="#packages">Software</a> | <a href="#cars">Vehicle Listings Project</a> </span> </div> --- class: middle, inverse .leftcol40[ <center> <img src="images/topics.png" width=100%> </center> ] .rightcol60[ ###
John Paul Helveston, Ph.D. ###
Dept. of Engineering Management and Systems Engineering ] --- name: background # Hello World! .leftcol30[.circle[ <img src="https://www.jhelvy.com/images/lab/john_helveston_circle.png" width="300"> ]] .rightcol70[ ### John Paul Helveston, Ph.D. .font80[ Assistant Professor, Engineering Management & Systems Engineering Website: [www.jhelvy.com](http://www.jhelvy.com/) - 2010 BS in Engineering Science & Mechanics at Virginia Tech - 2015 MS in Engineering & Public Policy at Carnegie Mellon University - 2016 PhD in Engineering & Public Policy at Carnegie Mellon University - 2016-2018 Postdoc at [Institute for Sustainable Energy](https://www.bu.edu/ise/), Boston University ]] --- class: center ## Technology Change Lab > I study how consumers, firms, markets, and policies affect technology change to <br> facilitate transitions to sustainable and low-carbon technologies. .cols3[ ### .center[Electric & Sustainable Vehicle Technologies] <center> <img src="images/ev.png" width=280> </center> ] .cols3[ ### .center[Market & Policy Analysis] <center> <img src="images/market.png" width=250> </center> ] .cols3[ ### .center[U.S. - China Climate Relationship] <center> <img src="images/uschina.png" width=100%> </center> ] --- ## I'm interested in questions like... <br> -- ### - How can we get people to buy more efficient vehicles? -- ### - How will emerging technology like autonomous and electric vehicles compete against existing technologies? -- ### - Would people be willing to pay a premium to reduce pollution? -- ## **Answers depend on knowing what people want** --- background-color: #000 class: center, middle, inverse # So I try to figure out what people want <center> <img src="images/crystal_ball.jpg" width=500> </center> --- class: center, middle ## Which feature do you care more about? <center> <img src="images/phone.png" width=200> </center> .cols3[ ## .center[Battery Life?] <center> <img src="images/phone_battery.png" width=100%> </center> ] .cols3[ ## .center[Brand?] <center> <img src="images/phone_brand.png" width=100%> </center> ] .cols3[ ## .center[Signal quality?] <center> <img src="images/phone_signal.png" width=100%> </center> ] --- class: center ## **Conjoint Analysis**: ## Use choice data to model preferences <center> <img src="images/conjoint_table.png" width=900> </center> --- ### .center[Use random utility framework to predict probability of choosing phone _j_] <br> -- ### 1. `\(u_j = \beta_1\mathrm{price}_j + \beta_2\mathrm{brand}_j + \beta_3\mathrm{battery}_j + \beta_4\mathrm{signal}_j + \varepsilon_j\)` -- ### 2. Assume `\(\varepsilon_j \sim\)` iid Gumbel distribution -- ### 3. Probability of choosing phone _j_: `\(P_j = \frac{e^{\beta'x_j}}{\sum_k^J e^{\beta'x_k}}\)` -- ### 4. Estimate `\(\beta_1\)`, `\(\beta_2\)`, `\(\beta_3\)`, `\(\beta_4\)` via maximum likelihood estimation --- class: center .leftcol[.center[ ## **Willingness to Pay** <br> .font140[Respondents on average are willing to pay $XX to improve battery life by XX%] ]] -- .rightcol[ ## **Make predictions** ### `\(P_j = \frac{e^{\hat{\beta}'x_j}}{\sum_k^J e^{\hat{\beta}'x_k}}\)` <center> <img src="images/phone_price_sens.png" width=500> </center> ] --- name: choose class: middle, inverse, center # Choose your own adventure ## [.red[Electric Vehicles]](#ev) ## [.orange[Low-carbon Fuels]](#fuel) ## [.yellow[Multi-modal Trips]](#modes) ## [.green[Autonomous Vehicles]](#av) ## [.blue[Electric Vehicle Incentives]](#incentive) ## [.purple[Electric Vehicle Smart Charging Programs]](#charging) --- name: ev class: inverse ## Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China .leftcol[ Helveston, John P., George Washington University Yimin Liu, Ford Elea M. Feit, Drexel U. Erica R.H. Fuchs, CMU Erica Klampfl, Ford Jeremy J. Michalek, CMU ] .rightcol[ _Transportation Research Part A: Policy and Practice_, 73, 96–112. (2015) DOI: 10.1016/j.tra.2015.01.002 Funding: - NSF - Ford Foundation ] --- <center> <img src="images/conjoint_cars.png" width=1000> </center> --- class: middle .leftcol35[ ## Chinese car buyers may be more willing to adopt full electric vehicles than Americans. ] .rightcol65[ <center> <img src="images/wtp_cars.png" width=100%> </center> ] --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: fuel class: inverse ## Choice at the Pump: Measuring Preferences for Lower-Carbon Combustion Fuels? .leftcol[ John P. Helveston, GWU Stephanie M. Seki, CMU Jihoon Min, CMU Evelyn Fairman, CMU Arthur A. Boni, CMU Jeremy J. Michalek, CMU Inês M. L. Azevedo, CMU ] .rightcol[ _Environmental Research Letters_, 14(8) (2019) DOI: 10.1088/1748-9326/ab2bd2 ] --- background-color: #fff <center> <img src="images/conjoint_fuels.png" width=1000> </center> --- ## On average, respondents WTP $150/ton CO2 avoided .leftcol75[ <center> <img src="images/wtp_fuels.png" width=100%> </center> ] .rightcol25[ Example: - 26 mpg car - 12-gallon tank - Gas: $3/gallon **A WTP of $150/ton CO2 avoided means increasing fuel price by 45%!** ] --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: modes class: inverse ## Measuring consumer preferences for multi-modal trips <br> .leftcol[ Lujin Zhao, GWU David Broniatowski, GWU Zoe Szajnfarber, GWU John P. Helveston, GWU ] .rightcol[ Zhao, L., Szajnfarber, Z., Broniatowski, D.A., & Helveston, J.P. (2023) “Using conjoint analysis to incorporate heterogeneous preferences into multimodal transit trip simulations” _Systems Engineering_. DOI: [10.1002/sys.21670](https://doi.org/10.1002/sys.21670) Funding: Toyota Mobility Foundation ] --- <center> <img src="images/conjoint_tmf.png" width=900> </center> --- class: center background-color: #fff .leftcol[ ## Value of time <center> <img src="images/wtp_tmf_time.png" width=100%> </center> ] .rightcol[ ## Value of mode <center> <img src="images/wtp_tmf_mode.png" width=100%> </center> ] --- class: center background-color: #fff <br> .leftcol[ <center> <img src="images/sim_tmf_walk.png" width=100%> </center> ] .rightcol[ <center> <img src="images/sim_tmf_bus.png" width=100%> </center> ] --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: av class: inverse # Undercutting Transit? ## Exploring potential competition between autonomous vehicles and public transportation in the U.S. <br> .leftcol40[ Leah Kaplan, GWU John P. Helveston, GWU ] .rightcol60[ Kaplan, Leah R. & Helveston, John P. (2023) “Undercutting Transit? Exploring potential competition between autonomous vehicles and public transportation in the U.S.” _Transportation Research Record_. DOI: [10.1177/03611981231208976](https://doi.org/10.1177/03611981231208976) Funding: NSF ] --- background-color: #fff class: middle, center ## Imagine you are going out for an evening leisure activity - <br> Which transportation option would you choose/ <center> <img src="images/conjoint_av.png" width=1100> </center> --- background-color: #fff class: center, middle <center> <img src="images/wtp_av.png" width=100%> </center> --- background-color: #fff class: center, middle <center> <img src="images/sim_badTransit.png" width=900> </center> --- background-color: #fff class: center, middle <center> <img src="images/sim_proRail.png" width=900> </center> --- background-color: #fff class: center, middle <center> <img src="images/sim_all.png" width=1000> </center> --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: incentive class: inverse ## Not All Subsidies are Equal:<br>Measuring Preferences for EV Financial Incentives <br> .leftcol40[ Laura Roberson, GWU John P. Helveston, GWU ] .rightcol60[ Roberson, Laura A. & Helveston, John P. (2022) “Not all subsidies are equal: Measuring preferences for electric vehicle financial incentives” _Environmental Research Letters_. 17(084003). DOI: [10.1088/1748-9326/ac7df3](https://doi.org/10.1088/1748-9326/ac7df3) Funding: Alfred P. Sloan Foundation ] --- background-color: #fff class: middle, center # Which incentive option would you prefer? <center> <img src="images/conjoint_incentives.png" width=1100> </center> --- background-color: #fff class: middle .leftcol[ <center> <img src="images/sample_incentives.png" width=430> </center> ] .rightcol[ ## Sample - Used [formr.org](https://formr.org/) Survey Platform - Fielded September, 2021 - Nationwide sample of Dynata panel ] --- background-color: #fff class: center, middle ### Immediate rebate is **$1,400** more valuable than tax credit <center> <img src="images/wtp_incentives.png" width=850> </center> --- background-color: #fff class: center ### Immediate rebate even more preferred for **low-income households** <center> <img src="images/wtp_incentives_income.png" width=850> </center> --- background-color: #fff <center> <img src="images/tax_total.png" width=930> </center> --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: charging class: inverse ## Grid-Integration of Electric Vehicles:<br>Consumer Preferences for Smart Charging Programs .leftcol[ Pingfan Hu, GWU Brian Tarroja, UC Irvine Matthew Dean, UC Irvine Kate Forrest, UC Irvine Eric Hittinger, RIT Alan Jenn, UC Davis John Paul Helveston, GWU ] .rightcol[ _Under Review_ Funding: Alfred P. Sloan Foundation ] --- class: inverse, middle, center # Unmanaged EV charging causes problems -- # "Smart charging" can help --- background-color: #f8f7f1 class: center ## SMC - Supplier Managed Charging ### SMC smooths out overnight EV charging demand & lowers peak load <center> <img src="images/charging_diagram1.png" width=90%> </center> --- background-color: #f8f7f1 class: center ## SMC - Supplier Managed Charging ### SMC smooths out overnight EV charging demand & lowers peak load <center> <img src="images/charging_diagram2.png" width=90%> </center> --- background-color: #f8f7f1 class: center ## V2G - Vehicle to Grid <center> <img src="images/charging_v2g.png" width=60%> </center> --- class: center ## Sample SMC Question <center> <img src="images/charging_smc_question.png" width=80%> </center> --- class: center ## Sample V2G Question <center> <img src="images/charging_v2g_question.png" width=80%> </center> --- class: center ## Enrollment Sensitivity <center> <img src="images/charging_sensitivities.png" width=90%> </center> --- class: center ## Enrollment Scenarios <center> <img src="images/charging_scenarios.png" width=70%> </center> --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: packages .leftcol[ # .blue[.center[[`logitr`](https://jhelvy.github.io/logitr/)]] <center> <img src="images/hex_logitr.png" width=250> </center> Fast estimation of multinomial and mixed logit models in R with “Preference” space or “Willingness-to-pay” space utility parameterizations. [https://jhelvy.github.io/logitr/](https://jhelvy.github.io/logitr/) ] .rightcol[ # .blue[.center[[`cbcTools`](https://jhelvy.github.io/cbcTools/)]] <center> <img src="images/hex_cbcTools.png" width=250> </center> Tools for designing choice based conjoint (cbc) survey experiments and conduction power analyses. [https://jhelvy.github.io/cbcTools/](https://jhelvy.github.io/cbcTools/) ] --- background-color: #fff .leftcol35[ # `surveydown` **surveydown** is an open-source, markdown-based platform for interactive and reproducible Surveys using [R](https://www.r-project.org/), [Quarto](https://quarto.org/), [Shiny](https://shiny.posit.co/), and PostgreSQL databases like [Supabase](https://supabase.com/). [https://surveydown.org/](https://surveydown.org/) ] .rightcol65[ <br><br> <center> <img src="images/architecture.png" width=100%> </center> ] --- name: cars class: middle, inverse # .center[Analyzing historical vehicle listings data] .leftcol[ <center> <img src="images/cars.png" width=400> </center> ] .rightcol[ - New and used cars from 2016-2021 - ~60,000 dealerships Powertrain | Listings -----------|----------- Gasoline | 39,118,862 Hybrid | 1,121,846 Battery Electric (BEV) | 349,506 Plug-In Hybrid (PHEV) | 181,461 ] --- ## .center[EV owners drive less than gasoline car owners] <center> <img src="images/cars-mileage.png" width=1000> </center> Zhao, L., Ottinger, E., Yip, A., & Helveston, J.P. (2023) “Quantifying electric vehicle mileage in the United States” _Joule_. 7, 1–15. DOI: [10.1016/j.joule.2023.09.015](https://doi.org/10.1016/j.joule.2023.09.015) --- # .center[Estimating residual value of EVs] <center> <img src="images/cars-depreciation.png" width=100%> </center> Roberson, Laura A., Pantha, S., & Helveston, J.P. (2024) “Battery-Powered Bargains? Assessing Electric Vehicle Resale Value in the United States” _Environmental Research Letters_. DOI: [10.1088/1748-9326/ad3fce](https://doi.org/10.1088/1748-9326/ad3fce) --- .leftcol75[ <center> <img src="images/burden_map_price_range.png" width=100%> </center> ] .rightcol25[ ## .center[Where are the EVs?] ] --- ### .center[EVs are disproportionately supplied to ZEV states] <center> <img src="images/cars-zev-heatmap.png" width=680> </center> --- class: inverse <br> # .center[.font150[Thanks!]] ### .center[Slides: https://github.com/jhelvy/research] .footer-large[ .right[ @JohnHelveston
<br> @jhelvy
<br> @jhelvy
<br> jhelvy.com
<br> jph@gwu.edu
]]