background-image: url("images/blue.jpg") background-size: cover class: inverse <br><br><br><br> ## Exploring Disparities in Battery Electric Vehicle Affordability and Availability **.white[John Paul Helveston]**, George Washington University<br> Zain Hoda, George Washington University<br> Daniel Fisher, George Washington University<br> Lujin Zhao, George Washington University<br> January 09, 2025 --- class: middle, center ## Addressing the **“innovation-needs paradox”**: ## The people most likely to benefit from a technology<br>are often the last ones to adopt it. --- class: center background-color: #fff ### .center[**Data**: 44.8M vehicle listings from ~60k dealerships (marketcheck.com)<br>(2016 - 2021, inclusive)] #### New Vehicles <table> <thead> <tr> <th style="text-align:left;"> Type </th> <th style="text-align:left;"> CV </th> <th style="text-align:left;"> HEV </th> <th style="text-align:left;"> PHEV </th> <th style="text-align:left;"> BEV </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Car </td> <td style="text-align:left;"> 3,246,993 </td> <td style="text-align:left;"> 154,188 </td> <td style="text-align:left;"> 40,206 </td> <td style="text-align:left;"> 93,939 </td> </tr> <tr> <td style="text-align:left;"> SUV </td> <td style="text-align:left;"> 5,234,631 </td> <td style="text-align:left;"> 65,507 </td> <td style="text-align:left;"> 0 </td> <td style="text-align:left;"> 48,284 </td> </tr> </tbody> </table> #### Used Vehicles <table> <thead> <tr> <th style="text-align:left;"> Type </th> <th style="text-align:left;"> CV </th> <th style="text-align:left;"> HEV </th> <th style="text-align:left;"> PHEV </th> <th style="text-align:left;"> BEV </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Car </td> <td style="text-align:left;"> 17,488,916 </td> <td style="text-align:left;"> 885,266 </td> <td style="text-align:left;"> 146,820 </td> <td style="text-align:left;"> 212,119 </td> </tr> <tr> <td style="text-align:left;"> SUV </td> <td style="text-align:left;"> 17,071,227 </td> <td style="text-align:left;"> 108,173 </td> <td style="text-align:left;"> 0 </td> <td style="text-align:left;"> 26,979 </td> </tr> </tbody> </table> --- class: middle # .center[How accessible are BEVs?] -- ## .center[Availability] .font120[ 1) How many dealerships are carrying BEVs? 2) How hard is it to get to a BEV dealer? ] <br> -- ## .center[Affordability] .font120[ 3) How affordable are BEVs? 4) How many people are eligible for the used PEV subsidy? ] --- class: inverse, middle, center # How many dealerships are carrying BEVs? --- class: center, middle .leftcol70[ <center> <img src="images/zev_plot.png" width=100%> </center> ] .rightcol30[ ## **~1 in 3** dealers carried a BEV in 2021 (nationally) <br> ## Up from<br>**~1 in 10** in 2016 ] --- class: center, middle ## **New** BEV availability growing faster than **Used** <center> <img src="images/zev_plot_new_used.png" width=950> </center> --- .leftcol55[ <center> <img src="images/state_bev_percent.png" width=100%> </center> ] .rightcol45[.font120[ - BEV inventories still low at most dealerships - Something of a "ZEV Effect" in new market - Used market more diffuse ]] --- class: inverse, middle, center # How hard is it to get to a BEV dealer? --- background-color: #fff ## “Access burden”: additional travel time to see a BEV .leftcol[ #### Access burden: 1. Find closest CV and BEV dealerships from census tract centroid. 2. Compute road travel time* to each dealership: `\(t_{\mathrm{PEV}}\)` and `\(t_{\mathrm{CV}}\)` 3. Compute “Burden” as difference in travel time: `\(b = t_{\mathrm{PEV}} - t_{\mathrm{CV}}\)` <br> *Road travel times obtained using<br>Open Street Road Map (OSRM) ] .rightcol[.border[ <center> <img src="images/tract-diagram.png" width=100%> </center> ]] --- class: center background-image: url('images/travel_burden_map.png') background-size: contain ### BEV access burden has improved over time, but large gaps remain --- class: center, middle .leftcol70[ <center> <img src="images/box_plot.png" width=100%> </center> ] .rightcol30[ ### Nationally, BEV travel burden is declining, both in magnitude and variation. ] --- class: center, middle .leftcol70[ <center> <img src="images/median_region.png" width=100%> </center> ] .rightcol30[ ### Largest disparities in BEV travel burden is in **rural** areas, but this is rapidly improving ] --- .leftcol60[ <center> <img src="images/pop_cfp.png" width=100%> </center> ] .rightcol40[ ### BEV travel burden still high for **affordable** BEVs in rural areas ] --- class: inverse, middle, center # How affordable are BEVs? --- class: center ### Most BEV supply growth in higher-price segments<br>.font80[(and overall supply still quite low)] <center> <img src="images/availability.png" width=100%> </center> --- ## .center[What is the median BEV (car) price premium over CVs?] <br> .font120[ For each census tract: - Obtain all BEV & CV car listings in a 2-hour isochrone. - Compute median prices for each: `\(p_{\mathrm{BEV}}\)` & `\(p_{\mathrm{CV}}\)` - Compute median premium as difference: `\(p_{premium} = p_{\mathrm{BEV}} - p_{\mathrm{CV}}\)` - Divide `\(p_{premium}\)` by median annual income of census tract ] --- .leftcol55[ <center> <img src="images/ev_burden_plot_national.png" width=100%> </center> ] .rightcol45[ ## Median BEV price premium as % of annual household income: .font120[ - New: 17.1% - Used: 13.6% ]] --- .leftcol70[ <center> <img src="images/ev_burden_plot.png" width=100%> </center> ] .rightcol30[ ## BEV premium much higher for DACs: .font120[ - New: 28.5% - Used: 23.7% ]] --- class: inverse, middle, center # How many people are eligible<br>for the used PEV subsidy? --- # This is a hypothetical calculation .font120[ - Used BEV subsidy was not available until 2024 ] -- # Some assumptions .font120[ - We use all BEV listings from 2016 to 2021 (inclusive). - We filter for only BEVs 2 years of age (current policy) - For each census tract, we count the population as "eligible" if: 1. The median income is <= the income cap. 2. The median used BEV price is <= price cap. ] --- class: middle, center background-color: #fff <center> <img src="images/eligibility_plot1.png" width=825> </center> --- class: middle, center background-color: #fff <center> <img src="images/eligibility_plot2.png" width=825> </center> --- class: middle, center background-color: #fff <center> <img src="images/eligibility_plot3.png" width=825> </center> --- class: middle, center background-color: #fff <center> <img src="images/eligibility_plot4.png" width=825> </center> --- class: middle, center background-color: #fff <center> <img src="images/eligibility_plot5.png" width=825> </center> --- class: middle background-color: #fff .leftcol70[ <center> <img src="images/eligibility_plot5.png" width=100%> </center> ] .rightcol30[.font110[ Eligible population could increase from<br>1/3 to 2/3 if: - Increase price cap: $25k -> $35k - Increase income cap: $75k -> $100k ]] --- class: inverse background-image: url("images/blue.jpg") background-size: cover <br><br><br><br><br><br><br><br><br><br> # Thanks! ### Slides: ### https://slides.jhelvy.com/2025-ev-policy-council/ .footer-large[.white[.right[ @jhelvy.bsky.social
<br> @jhelvy
<br> jhelvy.com
<br> jph@gwu.edu
]]] --- class: inverse, middle, center # Extra slides --- class: center background-color: #fff ### Access burden is shrinking in magnitude and spatial variation <center> <img src="images/box_plot.png" width=700> </center> --- class: center, middle background-color: #fff <center> <img src="images/diffusion.png" width=800> </center>